
N O T A T I O N  

k, ~, absorption and scattering coefficients of an elementary layer of material,  m -1; h = ~/(k + ~), 
photon survival probability, scattering criterion; ~, s, e e, averaged coefficients of absorption, backscat- 
tering,  and extinction of an elementary layer, m-l;  he = s/(~ + s), mean effective photon survival proba- 
bility, Schuster cri terion; r,  optical depth; y~, ~/, constant coefficients; fl,~, r e a l o r  imaginary numbers; 
E, radiation flux density, W/m2; E0, spatial irradianee,  W/m2; q, resultar~ flux density, W/m2; R, T, 
reflectivity and transmittance of a layer of finite thickness l; Roo, refleetivity of an optically infinitely thick 
layer; k, wavelength, #m~ Indices: ~, spectral; i, incident; e, effective. 
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HEAT EXCHANGE AND FRICTION IN A SUBSONIC 

VAPOR FLUX OF HIGH-TEMPERATURE HEAT PIPES 

V. N. Fed.roy and V. Ya. Sasin UDC 621.1.016.4-462 

The influence of forced vapor convection on heat t ransport  in heat pipes is examined on the 
basis of the solution of the energy and motion equations. It is shown that radial heat flux 
due to molecular heat conduction of the vapor in the evaporator is negligible. 

High-temperature heat pipes are ordinarily characterized in the l i terature as isothermal apparatuses. 
However, depending on the heat-exchange conditions in the surrounding medium and the magnitude of the 
power being transmitted, modes can exist where the axial temperature  profile is characterized by abrupt 
changes from the maximum value at the beginning of the evaporator to the temperature  of the surrounding 
medium at the end of the condenser. C. A. Busse gave a demarcation of heat pipe operating modes and 
typical axial temperature  profiles.  Taken as the viscous flow mode is that for which the vapor pressure  
at the end of the condensation zone is approximately equal to the vapor pressure  at the temperature of the 
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Fig. 1. Coordinate sys tem and decomposi -  
t ion of the velocity according to direct ion.  

ambient medium. An abrupt temperature drop in the condenser without recovery corresponds to the vis- 
cous mode. Viscosity forces are negligible in the inertial mode of vapor flow, where the temperature is 
partially or completely recovered in the condenser. An attempt is made in this paper to solve the equa- 

tions taking inertial and viscous forces into account. 

To a considerable extent, the power transmitted by heat pipes depends on the nature of the vapor 
generation processes, the liquid and vapor phase motion, and the heat exchange. The heat flux in evap- 
orators of heat pipes is determined mainly by the mass flow rate of the vapor from the evaporation sur- 
face. However, heat exchange by heat conduction of the evaporation surface exists with a vapor flux whose 
velocity is tens and hundreds of meters per second. The purpose of this paper is to estimate the contribu- 
tion of radial  heat conduction to the total  heat flux. 

The s ta t ionary operating mode of a plane heat pipe is considered.  The normal vapor velocity f rom 
the evaporat ion surface  for a constant density q on the surface is considered constant and given. It is 
assumed that there  are  no t empera tu re  jumps on the evaporat ion surface .  By neglecting the d iameter  of 
the vapor flux as compared with the length, the p res su re  change along the normal  to the evaporat ion su r -  
face can be neglected. For  the conditions presented above, the mean vapor velocity ac ross  the sect ion is 
a l inear function of the axial coordinate:  

~ l = ~ J U p d S - - k x .  (1) 

There  a re  no viscosi ty  and energy exchanges on the axis for a mass ,  momentum, and energy flow 
profile symmet r i c  relat ive to the axis.  The axial velocity on the axis UR is connected with the p res su re  
P by the Bernoulli  relat ionship which is charac te r i s t i c  for an inviscid incompressible  fluid flow. The equa- 
t ion of total enthalpy conservat ion 

; dP 
~ -  § ~ -  = const, (2a) 

G 
t (0) = t (R) + 2C~p- (2b) 

is valid in the absence of sinks on the axis.  Letting C' denote the ra t io  between the velocity U R on the axis 
and the mean velocity U ac ros s  the section, and assuming (C')2 = C, we obtain a dependence for  the p ressu re  by 
account:  

dP --Co~7 dU (3) 
d x  - -  d - ~  " 

The mean axial velocity ~ is determined by means of (1), where the proportionali ty factor k is expressed 
in t e r m s  of the heat flux by star t ing f rom the mass balance for the sect ion at the end of the evapora tor :  

k - -  Q (4) 
pSrx e 

The vapor density and heat of phase transition are taken for a given temperature of the evaporation 
surface. 

To determine the velocity and temperature profiles it is necessary to solve a system of equations 
in which are contained the equations of motion, continuity of the mass, and energy: 

U oU + v  ou a2u 1 dP . . . .  v - - - - -  + - 0, (5a) 
Ox Oy Og ~ 9 dx 
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OU OV 
- -  + - -  = O, ( 5 b )  

Ox Oy 

U Ot V Ot ~ 
Ox + oy - - a - - -  = O" .(5c) Oy* 

This  s y s t e m  of equations d e s c r i b e s  the vapor  motion in the evapora to r  of the heat pipe as the l aminar  flow 
of a p l ane -pa ra l l e l  s t r e a m .  The solution can be applied as an approx imat ion  to  analyze  the heat exchange 
and f r ic t ion  in heat  pipes ,  s ince we speak  about a thin layer  near  the evapora t ion  su r f ace .  Indeed, the de -  
r iva t ive  of the t e m p e r a t u r e  with r e s p e c t  to  the normal  coordinate  is sought in computing the heat exchange,  
and the de r iva t ive  of the axia l  veloci ty  with r e s p e c t  to  the s a m e  coordinate  is sought in computing the f r i c -  
t ion  drag .  The de r iva t ives  a r e  hence t aken  for the evapora t ion  su r f ace .  T h e r e f o r e ,  to seek  the quantities 
p resen ted  above it is sufficient to  have the veloci ty  and t e m p e r a t u r e  d is t r ibut ion  near  the su r face  [1]. 

To  ex t rac t  the pa r t i cu la r  solution, let us wr i te  the boundary condit ions.  Relying on Fig. 1, we have 
t(y) =t(0)  = const ,  U = 0, V{y) = V(0) = const for  the su r face  coordinate  at y = 0. The fundamental  boundary-  
layer  approx imat ion  --  the axial  veloci ty  on the su r face  equals ze ro  --  is used here ;  the blowing law is 
given.  F r o m  s y m m e t r y  conditions, for  the axis at y = R 

at ou 
- - = 0 ;  = o ,  v = 0 .  (6) 
Oy Oy 

The s y s t e m  (5) should be supplemented by re la t ionships  for  the axis (2) and by the mean  veloci ty  d i s t r ibu-  
t ion.  The d i f ference  between the p resen t  and the c l a s s i ca l  blowing p rob lems  for a homogeneous gas in an 
independent potential  flow is in the ass ignment  of the different  boundary condit ions.  In the p resen t  p rob lem 
it is imposs ib le  to know the inviscid flow t e m p e r a t u r e  and veloci ty  in advance,  i . e . ,  the flows on the axes;  
t hese  quantities a r e  to be de te rmined .  

It is natural ly imposs ib le  to make a check in the solut ion to  de t e rmine  the f r i c t ion  in the absence  of 
blowing, s ince without blowing the re  a r e  nei ther  tangent ia l  s t r e s s e s  nor f r ic t ion  in the evapora to r .  New 
boundary  conditions a r e  n e c e s s a r y  for such checks ,  as is a new solution, for instance,  for  the t r anspo r t  
zone of heat p i p e s  which is known well enough [1,4]. 

To  solve the s y s t e m  (5), let us a s s u m e  s e l f - s i m i l a r i t y  of the solution and let us reduce  the equations 
to  a more  convenient f o r m  for  seeking the roo t s .  Let us introduce the new d imens ion less  va r i ab l e s  

t (n) - -  t (o) v ~, ( ~ ) ~  U O ~  , 
~ - -  l / v x , U  ' U "  t,~--t(O) 

where  t m is the mean  mass  t e m p e r a t u r e  a c r o s s  a sec t ion  for a g iven coordinate  x. The p r ime  denotes 
different ia t ion with r e s p e c t  to the va r i ab le  ~. Let us r ep lace  the axia l  and rad ia l  veloci t ies  in t e r m s  of 
the s t r e a m  function $ so  that  it would sa t i s fy  the continuity equation (6b): 

U -  O, (x ,v)  , v =  O,(x ,v)  , ~ =  ,!,(x,v) 
Ov Ox V: ~x/U 

us ing  the s t r e a m  function and the d imens ion less  va r i ab les ,  we obtain a new s y s t e m  of ordinary  equations 
(7) in place of the s y s t e m  of par t i a l  d i f ferent ia l  equations (5): 

2 6 0  



[Z~ - -  : ! 

o ~ 4 LY 5 

Fig. 3. Velocity profi le:  1) ~R = [V(0)Relx/2/ 
~1 = 5.5; 2) ~IR = 10.0. 

r + ~"r - -  (r + c = o, (7a) 

0" + Pr C0' = 0. (7b) 

Equation (Ta) is the t rans formed  equation of motion and is the dependence of the velocity on the di-  
mensionless coordinate,  while (7b) is the energy equation. The Prandtl  parameter  Pr  for the vapor is 
given by means of the governing tempera ture .  In a f i rs t  approximation,  the given t empera tu re  of the evap- 
oration surface can be taken as governing. The undetermined coefficient C is calculated as the square 
of the dimensionless  velocity on the axis : 

c =  [r (nR)] ~. 

After manipulation, the boundary conditions (6) for the sys tem (7) become 

~1 = 0, 0 = 0, ~ (0) - Y (0)_Re 1/2 = const, 
U 

n = nn, ~" ( n ~ )  = o, ~ ( n ~ )  = o, o' (n~)  = o. (8) 

These  conditions and the sys tem of equations itself with the dependence (2) taken into account de te r -  
mine the unknowns uniquely. The sys t em has a solution. Equation (7b) is integrated directly by separat ion 
of var iables ,  and as the solution we obtain the dependence 

0 01) = 0 (rl, ~ ) 0 0 ~ 0 (r!,~) I 0]____~_) (9) 

f~exp (_ Pr i ~dq) d, 1 I (*le) 
0 0 

The tempera tu re  dependence takes its final form after  t ransforming  the dimensionless t empera tures  
into dimensional t empera tures  and expressing the velocity on the axis in t e rms  of the mean velocity:  

t (~)=t (0)- - [~ ' (~R)kx/2  1(n) (10) 
2C, I Oq~) 

To seek the t empera tu re  profile in the coordinate V, the coordinate dependence of the dimensionless 
integral  velocity is needed, which can be obtained f rom the motion equation (7a). An approximate analytic 
solution of (7a) was executed by giving basis functions with undetermined coefficients.  The solution is 
wri t ten as 

( F 
---~R q - - -  { 

+ h a (  6F 2FC~ '--3FC2) ~12( 4F ) 
- -  - - o -  + + FC I -  FC~ --FqR. (11) 

Here F is the dimensionless "blowing parameter" referred to the dimensionless axial coordinate: 
1 

v (o) Re 7 

U fir 

Trans fo rmat ion  of the function resul ts  in its explicit dependence on the blowing paramete r .  

(12) 
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The coefficient  is IC01 < 3 for  the case  under cons idera t ion  of computing h igh - t empe ra tu r e  heat pipes 
with sodium as the heat c a r r i e r .  The coefficient  was ref ined on an e lec t ronic  computer  (the "Nair i  2"). 
The accu racy  of the solut ion hence diminished far  f r o m  the wall .  The instabi l i ty  zone is shown by the dash  
in Fig.  3. 

The dependence between the undetermined coefficients  is 

4CoU 2CoU 
Cl = v (o) Re~/~' C~ = Y (0) Re~/~" 

Having obtained the function ~ (~) we can de t e rmine  the t e m p e r a t u r e  prof i le  in the evapora to r  of heat 
pipes by a numer ica l  solution of (10). 

Exper imenta l  invest igat ions ver i fy  the exis tence  of a r e l a t ive  i s o t h e r m y  of the evapora to r s  of high- 
t e m p e r a t u r e  heat pipes for an opt imum operat ing mode.  Typica l  t e m p e r a t u r e  prof i les  over  the length of 
the evapora to r  for va r i ab le  axial  loads a r e  r e p r e s e n t e d  in Fig.  2. The su r face  in the condenser  of such 
pipes is hence a lso  i so the rma l  or a lmos t  i so the rma l .  It is shown in Fig.  3 that  the veloci ty prof i le  is de -  
fo rmed  with the change in load and t h e " b l o w i n g  p a r a m e t e r , "  cor respondingly .  

It should be noted that  the de r iva t ive  of the veloci ty  with r e s p e c t  to  the coordinate  becomes  less  with 
the i nc rea se  in the "blowing p a r a m e t e r , "  the f r ic t ion  drag  on the v a p o r -  fluid in te r fac ia l  su r face  t h e r e f o r e  
being diminished.  This  r e su l t s  in a drop  in the p r e s s u r e  along the evapora to r  length in heat pipes and to 
r e la t ive  constancy of the vapor  flux t e m p e r a t u r e .  

To  e s t ima te  the heat exchange of an evapora t ion  su r face  with moving flux, the Four ie r  law must  be 
used in the f o r m  

qT-- ~/_-]~. (grad t)o. (13) 

The der iva t ive  t '  (~) is de te rmined  f r o m  (10) at zero .  It is shown graphica l ly  in Fig.  4 that the heat f r a c -  
t ion  t r ansmi t t ed  in addition by heat conduction f r o m  the wall to the vapor  i nc reases  with the growth in the 
axial  coordinate .  Computat ions p e r f o r m e d  for  a h igh - t empe ra tu r e  heat pipe at t = 575~ show that  the heat 
f rac t ion  due to  heat exchange of a wall  with a moving flux is hundredths of a percent  of the phase - t r ans i t i on  
heat .  

N O T A T  I O N  

U, V, axia l  and normal  ve loc i t ies ,  r e spec t ive ly ;  S, su r face ;  Q, heat flux; R, vapor  flux rad ius ;  
9, excess  t e m p e r a t u r e ;  P, p r e s s u r e ;  t ,  T, t e m p e r a t u r e s ;  F, p a r a m e t e r ;  C, coefficier~; #, coefficient  
of dynamic v i scos i ty ;  p, densi ty;  A, the rmal -conduc t iv i ty  coefficient;  v, coefficient  of k inemat ic  v i s -  
cos i ty ;  q, heat flux densi ty;  ~, d imens ion less  coordinate;  ~, veloci ty  function; Re,  Reynolds c r i t e r ion ,  
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Re x = (Ux)/p; Pr, Prandtl  c r i te r ion;  x, y, axial and normal  coordinates ;  r ,  heat of vapor formation;  Cp, 
specif ic  heat; ~, s t r e a m  function. Indices:  R, axis;  e, evapora tor ;  0, evaporat ion surface;  t ,  heat conduc- 
t ion. 
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ACTIVATION OF VAPORIZATION CENTERS. I* 

V. S. Novikov UDC 536.243 

The influence of dissolved gases on the formation of a vapor-bubble nucleus of critical dimen- 
sions is considered. A mathematical model is proposed for the subsequent evolution of the nu- 
cleus; it gives a correct description of the growth of the vapor bubble uptothe instant at which 
it is detached from the wall. 

Even after allowing for the temperature dependence of the surface tension g and molecular heat of vapor- 
ization h, the theory of heterophase fluctuations [i] leads [2] to values of the degree of superheating required 
to vaporize liquids roughly twice as great as those measured experimentally. Harvey [3] noted that micro- 
scopic gas nuclei might survive in the indentations of rough, unwetted solid surfaces, causing liquids to boil 
at very slight superheatings. The idea of micronuclei constitutes the basis for the theory of the deactivation 
of indentations proposed by Holz and Singer and set out in [4]. It follows from [5, 6] that stable gas micro- 
nuclei are absent inthecase of organic liquids. For these, as well as for liquid metals which wet adjacent 
solid surfaces almost completely [4], the deactivation theory cannot explain the fact of early boiling. A new 
physical model was proposed in [2, 7] for the initial stage of phase transformations in liquids; this model may 
help in explaining the boiling of organic liquids and molten metals. According to [2, 7], complexes of several 
vapor molecules formed as a result of the superheating of the boundary layer of liquid are adsorbed in inden- 
tations on the surface, forming nuclei of greater than critical size. This paper is a continuation of [2, 7] and 
considers the influence of dissolved gases on the boiling of liquids, as well as formulating a mathematical 
model for the further evolution of the nucleus. 

One of the reasons for the formation of gas micronuclei on a solid surface is the adsorption of gas dis- 
solved in the liquid on surface indentations. Let us consider an indentation of conical shape with a depth z 0 
and a base radius r 0. The number N a of gas molecules adsorbed in the indentation is determined by the ad- 
sorption isotherm derived in [7, 8], which has the following form for a conical indentation: 

P 

Na = - -  (I) 
1 P - -  P P ~ 

- - ~ o ) {  1 - -  + 7 g P [ l - - ( ~ o )  ] e x p ( - ~ - - ) } P 0  

*This paper (together with its second part) was presented  to the Fifth All-Union Conference on Heat T rans fe r  
and Hydraulic Res is tance  regarding the motion of two-phase flows in various parts  of hydraulic machines and 
instal lat ions;  the Conference was held in Leningrad on October 15-18, 1974. 
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