NOTATION

k, 7, absorption and scattering coefficients of an elementary layer of material, m~!; A =0¢/(k + 0),
photon survival probability, scattering criterion; k, s, ¢g, averaged coefficients of absorption, backscat-
tering, and extinction of an elementary layer, m‘i; Ag =8/ (1? +8), mean effective photon survival proba-
bility, Schuster criterion; r, optical depth; », vy, constant coefficients; g, v, realorimaginary numbers;
E, radiation flux density, W/m?; E,, spatial irradiance, W/m?; g, resultant flux density, wW/m’ R, T,
reflectivity and transmittance of a layer of finite thickness I; R, reflectivity of an optically infinitely thick

layer; A, wavelength, um. Indices: A, spectral; i, incident; e, effective.
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HEAT EXCHANGE AND FRICTION IN A SUBSONIC
VAPOR FLUX OF HIGH-TEMPERATURE HEAT PIPES

V. N. Fedorov and V. Ya. Sasin UDC 621,1.016.4-462

The influence of forced vapor convection on heat transport in heat pipes is examined on the
basis of the solution of the energy and motion equations. It is shown that radial heat flux
due to molecular heat conduction of the vapor in the evaporator is negligible.

High-temperature heat pipes are ordinarily characterized in the literature as isothermal apparatuses.
However, depending on the heat-exchange conditions in the surrounding medium and the magnitude of the
power being transmitted, modes can exist where the axial temperature profile is characterized by abrupt
changes from the maximum value at the beginning of the evaporator to the temperature of the surrounding
medium at the end of the condenser., C. A. Busse gave a demarcation of heat pipe operating modes and
typical axial temperature profiles, Taken as the viscous flow mode is that for which the vapor pressure
at the end of the condensation zone is approximately equal to the vapor pressure at the temperature of the
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Fig. 1. Coordinate system and decomposi-
tion of the velocity according to direction.

ambient medium, An abrupt temperature drop in the condenser without recovery corresponds to the vis-
cous mode, Viscosity forces are negligible in the inertial mode of vapor flow, where the temperature is
partially or completely recovered in the condenser. An attempt is made in this paper o solve the equa-
tions taking inertial and viscous forces into account.

To a considerable extent, the power transmitted by heat pipes depends on the nature of the vapor
generation processes, the liquid and vapor phase motion, and the heat exchange., The heat flux in evap-
orators of heat pipes is determined mainly by the mass flow rate of the vapor from the evaporation sur-
face, However, heat exchange by heat conduction of the evaporation surface exists with a vapor flux whose
velocity is tens and hundreds of meters per second, The purpose of this paper is to estimate the contribu-~
tion of radial heat conduction to the total heat flux.

The stationary operating mode of a plane heat pipe is considered. The normal vapor velocity from
the evaporation surface for a constant density q on the surface is considered constant and given, If is
assumed that there are no temperature jumps on the evaporation surface. By neglecting the diameter of
the vapor flux as compared with the length, the pressure change along the normal to the evaporation sur-
face can be neglected, For the conditions presented above, the mean vapor velocity across the section is
a linear function of the axial coordinate:

U= { Upds = k. ¢l

pS ¢
There are no viscosity and energy exchanges on the axis for a mass, momentum, and energy flow
profile symmetric relative to the axis. The axial velocity on the axis UR is connected with the pressure
P by the Bernoulli relationship which is characteristic for an inviscid incompressible fluid flow, The equa-
tion of total enthalpy conservation

%Ii + %ji = const, (23)
Uk

10y =¢t(R) + 50 (2b)
»

is valid in the absence of sinks onthe axis. Letting C' denote the ratio between the velocity UR on the axis
and the mean velocity Uacross the section, and assuming (C"?=C, we obtaina dependence for the pressure by
account:

ar - dU 3)
o e dx *

The mean axial velocity U is determined by means of (1), where the proportionality factor k is expressed
in terms of the heat flux by starting from the mass balance for the section at the end of the evaporator:

-0 4
k pSrx, @

The vapor density and heat of phase transition are taken for a given temperature of the evaporation
surface.

To determine the velocity and temperature profiles it is necessary to solve a system of equations
in which are contained the equations of motion, confinuity of the mass, and energy:
U U U dp

1
1% —_— b — =0,
0x - dy v dy? o dx (5a)

U
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perature of heat pipes on the dimensionless
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™ + 3 0, (5b)
ot ot 0%
v& Ly & % _
o + o ‘_1 o 0 (5¢)

This system of equations describes the vapor motion in the evaporator of the heat pipe as the laminar flow
of a plane-parallel stream. The solution canbe applied as an approximation to analyze the heat exchange
and friction in heat pipes, since we speak about a thin layer near the evaporation surface, Indeed, the de-
rivative of the temperature with respect to the normal coordinate is sought in computing the heat exchange,
and the derivative of the axial velocity with respect to the same coordinate is sought in computing the fric-
tion drag, The derivatives are hence taken for the evaporation surface, Therefore, to seek the quantities
presented above it is sufficient to have the velocity and temperature distribution near the surface [1].

To extract the particular solution, let us write the boundary conditions. Relying on Fig. 1, we have
t{y) =t(0) = const, U =0, V{y) = V(0) = const for the surface coordinate at y = 0, The fundamental boundary-
layer approximation — the axial velocity on the surface equals zero — is used here; the blowing law is
given, From symmetry conditions, for the axis at y =R

ot au

3 = 0; 5 =0, V=0 (6)
The system (5) should be supplemented by relationships for the axis (2) and by the mean velocity distribu~
tion. The difference between the present and the classical blowing problems for a homogeneous gas in an
independent potential flow is in the assignment of the different boundary conditions. Inthe present problem
it is impossible to know the inviscid flow temperature and velocity in advance, i.e., the flows on the axes;
these quantities are to be determined.

It is naturally impossible to make a check in the solution to determine the friction in the absence of
blowing, since without blowing there are neither tangential stresses nor friction in the evaporator. New
boundary conditions are necessary for such checks, as is a new solution, for instance, for the transport
zone of heat pipes. which is known well enough {1,4].

To solve the system (5), let us assume self-similarity of the solution and let us reduce the equations
to a more convenient form for seeking the roots. Let us introduce the new dimensionless variables
y U g tm—t)

—L—, t'(n =, 0= ,
VD FO=g 1 (0)

i
Ii

il

where ty, is the mean mass temperature across a section for a given coordinate x. The prime denotes
differentiation with respect to the variable 7. Let us replace the axial and radial velocities in terms of
the stream function i so that it would satisfy the continuity equation (5b):

p- X%y oy Ny . x5y
0y ox V ovxU
Using the stream function and the dimensionless variables, we obtain a new system of ordinary equations
(7) in place of the system of partial differential equations (5): :
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U2 C =0, (7a)
9" +Prgd’ =0. (Th)

Equation (7a) is the transformed equation of motion and is the dependence of the velocity on the di~
mensionless coordinate, while (7b) is the energy equation, The Prandtl parameter Pr for the vapor is
given by means of the governing temperature, In a first approximation, the given temperature of the evap-
oration surface can be taken as governing. The undetermined coeff1c1ent C is calculated as the square
of the dimensionless velocity on the axis:

C=1[g (mr)P
After manipulation, the boundary conditions (6) for the system (7) become
/2
n=0, 0=0, z(0)=——ORE"_
U
="z, {'(Mr)=0, {(Mr)=0, 6 (ng)=0. (8)

These conditions and the system of equations itself with the dependence (2) taken into account deter-
mine the unknowns uniquely. The system has a solution. Equation (7b) is integrated directly by separation
of variables, and as the solution we obtain the dependence

n n
s exp (— Pr f ;dn) dn
0(m) =8 (n=)

I
" - =0012) (("j) (9)
j exp Prf ;dn) dn
[} 0

The temperature dependence takes its final form after transforming the dimensionless temperatures
into dimensional temperatures and expressing the velocity on the axis in terms of the mean velocity:

£ () kxl I(m)
t(n) =t(0)— .
() =¢(0) 2C, Time)

To seek the temperature profile in the coordinate 7, the coordinate dependence of the dimensionless
integral velocity is needed, which can be obtained from the motion equation (7a). An approximate analytic
solution of (7a) was executed by giving basis functions with undetermined coefficients, The solution is
written as

10

F LG Fcz>+ 4( 4F c(,ALFcI_:ch:_,)_,r

R Mr o mR nx MR MR N7
6F )
+nd (___2‘ _gﬂ__ 3FcZ)+n2( 4F —:—FCI-—FCZ) — R, (11)
MR nr Nr . MR

Here F is the dimensionless "blowing parameter" referred to the dimensionless axial coordinate:
1

V(0)Re ?

(12)

Ung
Transformation of the function results in its explicit dependence on the blowing parameter.
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The coefficient is |Cyl < 3 for the case under consideration of computing high~temperature heat pipes
with sodium as the heat carrier. The coefficient was refined on an electronic computer ¢he "Nairi 2"),
The accuracy of the solution hence diminished far from the wall. The instability zone is shown by the dash
in Fig. 3. ' ’

The dependence between the undetermined coefficients is
4c,U 2c,U

T V(ORe®' T Y (O)ReV”

1=

Having obtained the function g(n) we can determine the temperature profile in the evaporator of heat
pipes by a numerical solution of (10). ,

Experimental investigations verify the existence of a relative isothermy of the evaporators of high-
temperature heat pipes for an optimum operating mode. Typical temperature profiles over the length of
the evaporator for variable axial loads are represented in Fig. 2. The surface in the condenser of such
pipes is hence also isothermal or almost isothermal. It is shown in Fig. 3 that the velocity profile is de-
formed with the change in load and the "blowing parameter," correspondingly.

It should be noted that the derivative of the velocity with respect to the coordinate becomes less with
the increase in the "blowing parameter," the friction drag on the vapor — fluid inferfacial surface therefore
being diminished. This results in a drop in the pressure along the evaporator length in heat pipes and to
relative constancy of the vapor flux temperature.

To estimate the heat exchange of an evaporation surface with moving flux, the Fourier law must be

used in the form .
g =———&—( rad ?) 13)
T V‘W g 0

The derivative t'(n) is determined from (10) at zero. It is shown graphically in Fig. 4 that the heat frac-
tion transmitted in addition by heat conduction from the wall to the vapor increases with the growth in the
axial coordinate. Computations performed for a high-temperature heat pipe at t = 575°C show that the heat
fraction due to heat exchange of a wall with a moving flux is hundredths of a percent of the phase-transition
heat.

NOTATION

U, V, axial and normal velocities, respectively; S, surface; Q, heat flux; R, vapor flux radius;
5, excess temperature; P, pressure; t, T, temperatures; F, parameter; C, coefficient; u, coefficient
of dynamic viscosity; p, density; A, thermal-conductivity coefficient; v, coefficient of kinematic vis- -
cosity; q, heat flux density; 7, dimensionless coordinate; g, velocity function; Re, Reynolds criterion,
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Rex = (Ux) /v; Pr, Prandtl criterion; x, y, axial and normal coordinates; r, heat of vapor formation; Cp:
specific heat; y, stream function. Indices; R, axis; e, evaporator; 0, evaporation surface; t, heat conduc-
tion.
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ACTIVATION OF VAPORIZATION CENTERS. I*

V. S. Novikov UDC 536.243

The influence of dissolved gases on the formation of a vapor~bubble nucleus of critical dimen-
sions is considered. A mathematical model is proposed for the subsequent evolution of the nu-
cleus; it gives a correct description of the growth of the vapor bubble uptothe instant at which
it is detached from the wall. “

Even after allowing for the temperature dependence of the surface tension o and molecular heat of vapor-
ization A, the theory of heterophase fluctuations [1] leads [2] to values of the degree of superheating required
to vaporize liquids roughly twice as great as those measured experimentally. Harvey [3] noted that micro-
scopic gas nuclei might survive in the indentations of rough, unwetted solid surfaces, causing liquids to boil
at very slight superheatings. The idea of micronuclei constitutes the basis for the theory of the deactivation
of indentations proposed by Holz and Singer and set out in [4]. It follows from [5, 6] that stable gas micro-
nuclei are absent inthecase of organic liquids. For these, as well as for liquid metals which wet adjacent
solid surfaces almost completely [4], the deactivation theory cannot explain the fact of early boiling., A new
physical model was proposed in [2, 7] for the initial stage of phase transformations in liquids; this model may
help in explaining the boiling of organic liquids and molten metals., According to [2, 7], complexes of several
vapor molecules formed as a result of the superheating of the boundary layer of liquid are adsorbed in inden-
tations on the surface, forming nuclei of greater than critical size. This paper is a continuation of [2, 7] and
considers the influence of dissolved gases on the boiling of liquids, as well as formulating a mathematical
model for the further evolution of the nucleus,

One of the reasons for the formation of gas micronuclei on a solid surface is the adsorption of gas dis-
solved in the liquid on surface indentations. Let us consider an indentation of conical shape with a depth z,
and a base radius r,. The number Ny of gas molecules adsorbed in the indentation is determined by the ad-
sorption isotherm derived in [7, 8], which has the following form for a conical indentation:

[ B
venryP V'ri + 22 [1— (—§—> ] exp ( v )
. 0

N, = P 3 RC v . Q)
=t v 1 (L) e ()]
(= ey e[ (5 oo 5]
*This paper (together with its second part) was presented to the Fifth All-Union Conference on Heat Transfer

and Hydraulic Resistance regarding the motion of two-phase flows in various parts of hydraulic machines and
installations; the Conference was held in Leningrad on October 15-18, 1974,
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